Advances in Permanent Magnet Motors

Induction

Permanent Magnet

Surface-Mounted

Embedded

Inserted

Efficiency

Cost

John Petro Motor Summit 2018 International, Zurich, Switzerland

November 2018
Innovation continues at an encouraging pace

- Overall market
- Line-start Permanent Magnet motors (LSPM)
- Motor design advances
- Improvements in materials
- Conclusions
Current Industry Status

- All motor types are improving
 - Induction – IE4 and possibly IE5 with copper rotor
 - Synchronous reluctance – IE4 and higher with PM magnet assist
 - Switched reluctance – lower material and drive costs and line-start versions, vibration still limiting issue
- PM motors still achieve the highest efficiencies
- Cost and complexity limit high efficiency motor usage and are often due to drive electronics
- Line operation could solve cost and complexity
The Problem for Line-Start PM Motors

- Limited options for AC line-operated PM motors
- PM AC line operation often accomplished by
 - AC line drive – drive costs about same as motor cost
 - DC low voltage drive – low cost drives are available, but conversion of line AC to low voltage DC cost is still high (> 3-5 US cents/watt)
 - Induction line start often has oscillations at startup
- Electronics are often less reliable than the motor
- Single phase power is often utilized for smaller motors
The MGT Line-Start Dual Rotor Motor

- Outer rotor starts as quickly as induction rotor
- Inner rotor coupled as magnetic clutch

Additional bearings
Startup Issues with LSPM Motors

- Motor startup is a challenging issue

Standard LSPM

MGT Inc. dual rotor start
Large Inertia Startup (~100 x rotor inertia)

- Startup time about 8 seconds
Large Efficiency Gains are Possible

- PM motors can greatly increase small motor efficiency
MGT Motor Efficiency

- As efficient as best commercially available drive operated PM motors
- More efficient when drive losses are considered
- Efficiency gains of 10 % to > 20 % over existing induction motors!
- Only additional costs are bearings and magnets
- Future work
 - Reduce magnet costs with use of ferrite
 - Develop single phase version
Additional PM Motor Advantages

• Induction motors are less efficient at < 1800 rpm
• PM motors with higher pole counts can operate efficiently at lower speeds
• This enables direct drive low speed operation and can eliminate gearing losses
Commercially Available Motor Improvements

- Efficiencies and range still improving

<table>
<thead>
<tr>
<th>HP</th>
<th>600 RPM</th>
<th>900 RPM</th>
<th>1200 RPM</th>
<th>1800 RPM</th>
<th>2400 RPM</th>
<th>3600 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>92.5%</td>
<td>90.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>92.5%</td>
<td>92.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>91.5%</td>
<td>93.0%</td>
<td>92.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>94.0%</td>
<td>93.0%</td>
<td>93.0%</td>
<td>93.0%</td>
<td>91.0%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>93.5%</td>
<td>94.5%</td>
<td>93.5%</td>
<td>94.0%</td>
<td>93.5%</td>
<td>92.4%</td>
</tr>
<tr>
<td>5</td>
<td>94.0%</td>
<td>94.0%</td>
<td>94.0%</td>
<td>94.0%</td>
<td>94.0%</td>
<td>93.0%</td>
</tr>
<tr>
<td>7.5</td>
<td></td>
<td>93.5%</td>
<td>95.0%</td>
<td>95.0%</td>
<td></td>
<td>93.5%</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>95.0%</td>
<td>95.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>95.0%</td>
<td>95.0%</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95.0%</td>
<td>94.5%</td>
</tr>
</tbody>
</table>

NovaMAX motor 182/184 Frame
NovaMAX motor 213/215 Frame
Motor Design Developments

- Interior PM designs (IPM) improving
 - Driven by automotive traction motors
 - Reduced volumes of magnet material
 - Major reductions in cost
- Hairpin winding technology
- PM-assisted synchronous reluctance motors
- Ferrite PM flux concentration in motor designs
- Line-start PM-assisted switched reluctance
New Magnet Developments

- New ferrite materials becoming available
 - Higher coercivity – more available motor power
 - Positive temperature coefficient – no demagnetization at cold temperatures
- Low rare earth formulations
- Substitution of lower cost rare earth elements
- Oriented molded magnets at > 20 MGO*
- Samarium iron nitride commercially available
 - Moldable and oriented in thin slots
 - Flexible magnetic orientations

*) MGO: Mega Gauss Oersted - the standard measurement for magnet performance
Conclusions

MGT line start motor has good performance

- Smooth AC line start with any inertia
- High efficiency and load stable
- Low cost, standard manufacturing techniques

<table>
<thead>
<tr>
<th>DR-LSPM Operating point</th>
<th>Load Torque (Nm)</th>
<th>Line to Line Voltage (Vrms)</th>
<th>Phase Current (Ams)</th>
<th>Power Factor (PF)</th>
<th>RPM (rpm)</th>
<th>Input Power (W)</th>
<th>Output Power (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSPM @ No load</td>
<td>0</td>
<td>221</td>
<td>0.25</td>
<td>0.40</td>
<td>1800</td>
<td>38.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LSPM @ 3/4hp</td>
<td>2.97</td>
<td>221</td>
<td>1.61</td>
<td>0.98</td>
<td>1800</td>
<td>607.8</td>
<td>559.9</td>
<td>92.1</td>
</tr>
<tr>
<td>LSPM @ 1hp</td>
<td>3.96</td>
<td>221</td>
<td>2.06</td>
<td>0.99</td>
<td>1800</td>
<td>800.3</td>
<td>746.5</td>
<td>93.3</td>
</tr>
<tr>
<td>LSPM @ 1.5 hp</td>
<td>4.95</td>
<td>221</td>
<td>2.62</td>
<td>0.99</td>
<td>1800</td>
<td>1002.6</td>
<td>933.1</td>
<td>93.1</td>
</tr>
</tbody>
</table>

John Petro
Zurich, Switzerland
November 2018
Conclusions

- World needs more efficient motors
- PM motors can provide efficiency gains
- AC line operation is key
- Motor designer challenge
 - Explore all options for line-start PM motors
 - Investigate use of ferrite with flux-concentration
 - Look at lower speed, direct drive applications
 - Look at other motor types - LS Synchronous Reluctance (SRM)
Thank you !!!

Questions?

johnpetro@comcast.net
+1 650 526 8129